Introduction : Operating system and functions, Classification of Operating systems- Batch,
Interactive, Time sharing, Real Time System, Multiprocessor Systems, Multiuser Systems,
Multiprocess Systems, Multithreaded Systems, Operating System Structure- Layered structure,
System Components, Operating System services, Reentrant Kernels, Monolithic and Microkernel Systems.
Concurrent Processes: Process Concept, Principle of Concurrency, Producer / Consumer Problem, Mutual Exclusion, Critical Section Problem, Dekker’s solution, Peterson’s solution, Semaphores, Test and Set operation; Classical Problem in Concurrency- Dining Philosopher Problem, Sleeping Barber Problem; Inter Process Communication models and Schemes, Process generation
CPU Scheduling: Scheduling Concepts, Performance Criteria, Process States, Process Transition Diagram, Schedulers, Process Control Block (PCB), Process address space, Process identification information, Threads and their management, Scheduling Algorithms, Multiprocessor Scheduling. Deadlock: System model, Deadlock characterization, Prevention, Avoidance and detection, Recovery from deadlock.
Memory Management: Basic bare machine, Resident monitor, Multiprogramming with fixed
partitions, Multiprogramming with variable partitions, Protection schemes, Paging, Segmentation, Paged segmentation, Virtual memory concepts, Demand paging, Performance of demand paging, Page replacement algorithms, Thrashing, Cache memory organization, Locality of reference
I/O Management and Disk Scheduling: I/O devices, and I/O subsystems, I/O buffering, Disk
storage and disk scheduling, RAID. File System: File concept, File organization and access
mechanism, File directories, and File sharing, File system implementation issues, File system
protection and security.